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Abstract

Given photometric broadband measurements of a galaxy, Gaussian pro-
cesses may be used with a training set to solve the regression problem of approx-
imating the redshift of this galaxy. However, in practice solving the traditional
Gaussian processes equation is too slow and requires too much memory. We em-
ployed several methods to avoid this difficulty using algebraic manipulation and
low-rank approximation, and were able to quickly approximate the redshifts
in our testing data within 17 percent of the known true values using limited
computational resources. The accuracy of one method, the V Formulation, is
comparable to the accuracy of the best methods currently used for this problem.
However, the V Formulation is quicker, and its numerical stability is superior.

If 10 percent of outliers are removed from the testing data, the error
is reduced from 17 percent to 12 percent. A necessary condition was found
for identifying these outliers, that the norm of a collection of redshifts corre-
sponding to these outliers is comparatively large when compared to the norm
of a randomly selected group of redshifts. Moreover, viewing characterization
of outliers as a classification problem, it was possible to reduce the error to
approximately 15 percent.
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1 Redshift and photometric observations

Let y = (y1, ..., yn)T be a sequence of redshift observations of n galaxies.
In Way and Srivastava’s [Way and Srivastava, 2006] observation set which is
based on the SLOAN sky survey, for each galaxy i there are five photometric
observations denoted as U,G, R, I, Z. We use X to denote an n × 5 matrix
such that the ith row xi of X represents the five photometric observations
corresponding to galaxy i, and we let U,G, R, I, Z denote the columns of X in
their respective order. The goal is to fit a model from given observations X and
y such that using this model, we can find a prediction ŷ∗ of the redshift y∗ of
some galaxy after inserting the galaxy’s photometric observations X∗ into the
fitted model.

1.1 What is a Redshift?

The redshift of a galaxy, z, is the change in the wavelength divided by the
initial wavelength of the electromagnetic waves that are emitted by the galaxy.
Hence, the redshift of z is dλ

λ0
. A redshift of a galaxy indicates that it is moving

away from the earth. By calculating the redshift of a galaxy, scientists can
determine many characteristics of that galaxy and the universe. For example,
a redshift can determine the distance between the galaxy and the earth.

There are two methods that are used to collect the data needed to calcu-
late a red shift: photometry and spectroscopy. Photometry uses multiple filters,
each designed to collect particular wavelengths of the electromagnetic spectrum.
These filters collect data from 5 band passes - U,G, R, I, and Z, which range
from the ultraviolet to the infared. Broadband photometry is designed to collect
5 pieces of data (one from each band pass) which comes from many objects, in
our case galaxies, in a particular region of space. Spectroscopy, on the other
hand, uses a diffraction grating which will split the light emitted from the galax-
ies into the different wavelengths to collect the spectral data. Spectroscopy is
often preferred because there it collect more data from its object and therefore it
is more accurate. However, since photometry is cheaper and faster, and because
it collects more data at one time, it was the preferred method used by Dr. Way
and Dr. Srivastava in their research [Way and Srivastava, 2006], upon which
the research in this paper is based.

There are two main approaches used to calculate photometric redshifts.
The spectral energy distribution fitting (SED fitting), also known as template
fitting, compares the spectral energy distribution converted from the observed
data with the spectral energy distribution of a known template. The training-
set method (TS method) uses the redshifts calculated of other similar galaxies
and the newly observed data to calculate the redshifts of these new galaxies.
The SED fitting approach has typically been preferred because the TS method
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requires samples of galaxies that are similar in magnitude, color, and red shift.
These samples have not always been available because the telescopes could not
reach as far into space. However, now that the surveys can go deeper into
space, the TS method can be used because there are more samples of galaxies
with the same characteristics. Dr. Way and Dr. Srivastava described various
TS methods that have been recently used and developed in their report, that
enabled them to estimate the photometric redshifts of galaxies. Using the TS
method, the scientists wanted to find the best mathematical model for the red-
shift data. Some of the techniques they used, both linear and non-linear, were
polynomial fittings, support vector machines, and artificial neural networks. In
particular, the scientists compared the neural network ANNz model, the linear
and quadratic models, the ensemble model, and Gaussian processes to find the
best model for the red shifts. The Gaussian process regression was the focus of
our problem.
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2 Gaussian Processes

The set of 180, 045 measurements through the 5 broadband spectrums
(UGRIZ) are given by a 180, 045 × 5 matrix X , and the corresponding red-
shift measurements are stored in a a 180, 045×1 vector y. Together, these form
the training dataset. A second set of 20, 229 more measurements X∗ along with
20, 229 corresponding redshifts stored in y∗ together form the testing dataset.
This second set was the testing data, and in practice would be a set of broad-
band spectrum values whose redshifts were unknown. For the purposes of our
research the measured redshifts y∗ were known. The goal is to predict the value
of y∗ given X, y, and X∗ using Gaussian processes.

The prediction of y∗ involved both covariances between rows from X
and itself, forming a covariance matrix K(xi, xj) and between rows from X and
X∗, forming a covariance matrix K∗(x∗i , xj). The prediction ŷ∗ of y∗ is given
by the traditional Gaussian processes equation, shown below:

ŷ∗ = K∗(λ2I + K)−1y

The parameter λ in this equation represents the noise in the measurements
[Rasmussen and Williams, 2006, pp. 16-17] and in practice it is often selected
to improve the quality of the model [Rasmussen and William, 2006, Chap. 5].

It is not completely clear how to choose the kernel function K , and
there exist many different kernel functions that apply broadly to many cases.
Last semester, the polynomial kernel was used, a function that involved matrix
multiplication of X and X∗ to generate K. Namely, the kernel took the form
K = (λ2I +XXT ).̂ 2, where the symbol .̂ here indicates componentwise square
(so that if B = (λ2I +XXT ) then kij = bij2). Since X is a 180, 045×5 matrix,
K is a 180, 045 × 180, 045 matrix. This semester, the study went further by
experimenting with many other kernels. Last semester four methods that were
used and perfected were the reduced rank method, the Cholesky update, the
conjugate gradient, and the classic method, quadratic regression. We refer the
reader to last semester’s report for detail of these methods [Cayco, So, et. al.,
2006]

3 Gibbs Sampler

The Gibbs Sampler is another method of solving a system of linear equa-
tions. The Gibbs Sampler is based off of the Monte Carlo idea, a process of
finding the expected value of a population by creating a random sample of the
population. Given that this random sample is representative of the population,
the Monte Carlo idea states that the average of this sample is the expected value
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of the population. The best way to ensure that this sample is representative is to
take a large sample. In the case of redshifts however, this process is translated
to vectors and matrices. The population in this case is the covariance matrix
A, and the random sample will be a set of vectors.

This set of random vectors will form a matrix S whose covariance matrix
will ideally be A−1. The Gibbs Sampler works best in situations where large
tolerance for error is allowed and standard procedures are too slow. Other
factors can come into play however, one of which is the condition ratio. The
condition ratio of A is the largest eigenvalue of A divided by the smallest, and the
smaller the condition ratio, the more accurate the Gibbs Sampler will be. It was
seen last semester that by generating A by a polynomial kernel, the condition
ratio was too large for the Gibbs Sampler to work. So instead this semester the
squared-exponential kernel was used for the majority of experimentation of the
Gibbs Sampler to better success.

The Gibbs Sampler code used in this project was a computer algorithm
put forth by [Geman and Geman, 1984]. Given A, the elements of S must be
randomly selected such that they accurately represent A. This is done with a
series of dot products and matrix multiplication. S is denoted by a series of
vectors si, the more vectors, the better. These vectors are generated one entry
at a time and are dependent both on A, whose columns are denoted as vi, and
the vectors of S that have already been created. To ensure that the vectors are
representative of A, the mean and standard deviation of the entry that is being
created are computed first. The algorithm put forth by Geman and Geman was
that the entry of S that lies in the kth column and ith row of S has a mean of:

m =
i+1∑
j=1

vijsjk +
n∑

j=i+1

vijsjk−1

The mean is found by taking the semi-dot product of the first i-1 entries
of the jth column of A with the entries in the kth column of S that have already
been created, as well as the last n-(i+1) entries of the jth column of A with the
entries in the column of S previous to the kth column. The entire product is
then multiplied by the negative reciprocal of the ith diagonal entry of A. Thus,
this entire process doesn’t require that A be completely computed beforehand
either. However, it should be noted that each new vector of S depends on
the vector that came before it, thus to avoid confusion on generating the first
vector of S, a column of zeroes is automatically made the first column of S. The
standard deviation is simply computed as:

t =
1

√
vii
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After the mean and standard deviation are computed, the entry in the
ith row and kth column of S is computed to be sik = tz + m, where z is a ran-
dom number created by a pseudo-random number generator at standard normal
distribution, as most computer systems have such a generator. The process is
repeated until all the vectors (and columns of S) have been generated, and the
covariance of S is computed to be (SSˆT )/k where k is the number of vectors
that were generated to form S. For the various different kernels that were sam-
pled, the one that was used for the majority of the study of the Gibbs Sampler
was the squared-exponential kernel. However, despite the improvements on the
Gibbs Sampler from last year’s studies, obstacles still stood in the way.

The biggest obstacle was that of time. Time was one of the primary
reasons why alternate methods to quadratic regression were sought after, but the
Gibbs Sampler in this form was not a time-efficient code. Due to the complicated
ordering factors involved in the production of the mean values, the MATLAB
code that was used required looping codes with looping codes (creating double
loops). Therefore, these loops caused the running time for the Gibbs Sampler to
be very large, especially for larger data sets. Alternate methods were eventually
devised to decrease running times, like Fortran codes with MATLAB, but in
the end the Gibbs Sampler was still simply not as fast as the other methods
devised over this semester. Another factor was that of accuracy, even after
careful reconstruction through the Fortran code, the accuracy of the Gibbs
Sampler was only about half as good as that of the other methods examined
both this semester and last semester. Perhaps the biggest reason behind why
the Gibbs Sampler was never fully realized was that the code was one of several
different algorithms that have been proposed for the Gibbs Sampler, some of
which are much more advanced, complex, and less prone to errors than the
one used in these experiments. The RMS values for the Gibbs Sampler would
tend to converge to values twice that of the values in other methods used, so
while the Gibbs Sampler could work, it wasn’t efficient in relation to the other
methods. Further study in the Gibbs Sampler would involve finding a quicker
or more complex algorithm that would allow for more accurate results without
sacrificing time efficiency.

8



4 Covariance Functions / Kernels

According to [Rasmussen and Williams, 2006] (for much of this section
we follow the development in this source) a Gaussian process is a collection of
random variables, any finite number of which have a joint Gaussian distribution.
To characterize a Gaussian process it is critical to specify its covariance function.
A covariance function is a function k(x, x′) of two variables, sometimes called a
kernel, with the property∫

k(x, x′)f(x)f(x′)dµ(x)dµ(x′ ≥ 0

for a suitable function f(x) and measure µ. Covariance functions character-
ize the nearness or similarity between input data points. A covariance function
k(x, x′) gives the covariance of the values of the random field at the two locations
x and x′.

Let {xi|i = 1, ...., n} be a set of input points. Then the Gram matrix
or covariance matrix is defined as K whose entries are Kij = k(xi, xj). A
Gram matrix corresponding to a general kernel function need not be positive
semi-definite but the Gram matrix corresponding to the covariance function is
positive semi-definite.

We now summarize some of the features of commonly used covariance
functions:

The Squared Exponential (SE) covariance function is defined by the
following equation:

kSE(r) = exp(− r2

2`2
)

where ` is the length scale. This covariance function is infinitely differen-
tiable and hence is very smooth. With such strong smoothness, it is sometimes
unrealistic for use in modelling real physical processes. The squared exponential
covariance function is also called the radial basis function.

The Matern class covariance function is defined by the following equa-
tion:

kMatern(r) = 2`−v

Γ(v) (
√

2vr
` )v Kv(

√
2vr
` )
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where v, ` are positive parameters and Kv is a modified Bessel function.
The Matern class covariance function reduces to the Squared Exponential
covariance function as v → ∞. It becomes simpler when v is a half integer.
For example, if v = p + 1

2 (where p is a non-negative integer), it reduces to a
covariance function that is a sum of an exponential and a polynomial function:

kMatern(v=p+ 1
2 )(r) = exp

(
− 2vr

l

) Γ(p+1)
Γ(2p+1)

∑p
i=0

(p+i)!
i!(p−i)!

(√
8vr
l

)p−i

The process becomes very rough for v = 1
2 and for values of v ≥ 7

2 , the
function is as rough as noise. The Matern class covariance function is mean
square differentiable k times if and only if v > k. Hence, the Matern class of
covariance functions can be used to model real physical processes and is more
realistic than the Squared Exponential (SE) covariance function.

The Rational Quadratic (RQ) covariance function is defined by the
following equation:

kRQ(r) =
(
1 + r2

2αl2

)−α

The Rational Quadratic (RQ) covariance function reduces to a Squared Ex-
ponential (SE) covariance function as α → ∞. This function is mean square
differentiable for every α as opposed to Matern class covariance function.

The polynomial covariance function, in its most general form, can be
defined by the equation:

k(x, x′) = (σ2
0 + xT Σpx

′)p

where Σp is a positive semidefinite matrix and p is a positive integer. If
σ2

0 = 0, the kernel is homogeneous and linear, and otherwise it is inhomogeneous.
In principle it may not be suitable for regression problems as the variance grows
with | x | for | x |> 1. However there are applications where it has turned out
to be effective [Rasmussen and Williams, 2006].

The Neural Network (NN) covariance function is defined by the
following equation:

kNN (x, x′) = 2
π sin−1

(
2xT Σx′√

(1+2xT Σx)(1+2x′T Σx′)

)
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This covariance function is named after Neural networks because the function
can be derived from the limiting case of a model of a neural network.

Two or more covariance functions can be combined to produce a new covari-
ance function. For example sums, products, convolutions, tensor products and
other combinations of covariance functions can be used to form new covariance
functions. Details are described in [Rasmussen and William, 2006].
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5 Low Rank Approximation

Definition: A positive semi-definite matrix K̂ is a low rank approximation

of covariance matrix K if
∥∥∥ŷ∗K − ŷ∗

K̂

∥∥∥ is small, where ŷ∗K is the approximation
to y∗ calculated with covariance matrix K and ŷ∗

K̂
is the approximation to y∗

calculated with covariance matrix K̂.

It is difficult to calculate a low rank approximation of K using this def-
inition directly. However, if K̂ is sufficiently numerically stable and

∥∥∥K − K̂
∥∥∥is

small, then K̂ is a low rank approximation of K. Singular value decomposition
and partial Cholesky decomposition may be used to find such a K̂.

5.1 Singular Value Decomposition

Covariance matrices are n x n, which for large n makes them impossible to
calculate in a reasonable amount of time or store in memory. A possible solution
is to instead calculate low rank approximations of these matrices. There is a
well-known bound on how good these approximations can be. If α1 ≤ α2 ≤
· · · ≤ αn are the eigenvalues of any matrix K, and K̂ is any rank m matrix,
then

∥∥∥K − K̂
∥∥∥ ≥ αm+1. The singular value decomposition of K can be used

to find a K̂ such that
∥∥∥K − K̂

∥∥∥ = αm+1, proving K̂ to be the best low rank
approximation of K [Golub and Van Loan, 1996, p. 72]. Unfortunately, singular
value decomposition is expensive in terms of time and memory, requiring O(n3)
operations, and so it is not feasible with large matrices. Therefore, a more
economic method is required.

5.2 Partial Cholesky Decomposition

The partial Cholesky decomposition is a generalization of the Cholesky
decomposition which may be calculated for a positive semi-definite n×n matrix
K. For any m < n, there exists an n ×m matrix V such that K̂ = V V T is a
rank m partial Cholesky decomposition of K, and it follows from this that K̂
is a low rank approximation of K. Moreover, this decomposition is not unique
– many different possible choices of V exist. Rather than lower triangular as in
the Cholesky decomposition, V is “lower trapezoidal” as illustrated below.
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K̂ = V V
T

=

v11 0 · · · 0
v21 v22 · · · 0
...

...
. . .

...
v(m−1)1 v(m−1)2 · · · 0

vm1 vm2 · · · vmn

...
...

. . .
...

vn1 vn2 · · · vnn




v11 v21 · · · v(m−1)1 vm · · · vn

0 v22 · · · v(m−1)2 v2m · · · v2n

...
...

. . .
...

...
. . .

...
0 0 · · · 0 vmn · · · vnn



5.3 Partial Cholesky Decomposition With Pivoting

Partial Cholesky decomposition with pivoting is an algorithm which is
based on an algorithm to calculate the Cholesky decomposition, simply halted
after m steps. It may be used to calculate a unique rank m partial Cholesky
decomposition of K in O(nm2) operations. Pivoting need not be used, but with-
out pivoting the decomposition is not unique and there is no theoretical bound
on the inaccuracy of the approximation. If pivoting is used, then

∥∥K − V V T
∥∥

is bounded by c1 =
√

1
3 (n−m) (4m + 1)αm+1. [Higham, 2002, p. 204] In

practice, this bound is not necessarily a good indication of the accuracy of the
approximation, and usually

∥∥K − V V T
∥∥ is well under 10αm+1 [Higham, 2002,

p. 207]. The algorithm for calculating the partial Cholesky decomposition with
pivoting is given below.
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5.4 Algorithm: Partial Cholesky Decomposition with Piv-
oting

Given a positive semi-definite K, this algorithm [Higham, 2002, p. 202]
computes the partial Cholesky decomposition with pivoting algorithm. At each
step let piv be a vector such that K̄(piv, piv) is a matrix in which its first m−1
diagonal entries equal 0, and its mth diagonal entry is max(diag(K̄)). Note the
the output of this algorithm is not K̄, but V = (vij).

K̄ = K
for j = 1 : m

K̄ = K̄(piv, piv)
for i = 1 : j − 1

vij = 1
vii

(
kij −

i−1∑
k=1

vkivkj

)
end

vjj =

√(
kjj −

i−1∑
k=1

vkj

)
K̄ = K̄ − vmvT

m

end

The line K̄ = K̄(piv, piv) is the pivoting step, and without this step the
above algorithm would be the Partial Cholesky Decomposition without Pivoting.

5.5 Pivoting

Pivoting is useful in forming a numerically stable low rank approximation of
a positive semi-definite matrix, and to do so it identifies the rows of the training
data which limit the growth of computer arithmetic errors. A pivot of the
matrix K, which is simply a permutation of K of the form PKPT corresponds
to the permutation PX of X . The above partial Cholesky algorithm with
pivoting will move columns and rows of K so that the m by m leading principal
submatrix of PKPT has the condition number that is with a constant c2 of
α1/αm. The proof follows from arguments similar to those in [Higham, 2002,
pp. 195-208]. The constant c2 is related to the constant c1 above.

Thus pivoting will tend to construct a low rank approximation whose
condition number is related to the condition number (α1/αm) of the low rank ap-
proximation produced by the singular value decomposition. However the growth
of computer arithmetic errors in the algorithm depends on the condition num-
ber of the low rank approximation. Since pivoting limits the condition number
and the growth of computer arithmetic errors depends on the condition num-
ber, pivoting will tend to improve the numerical stability of the algorithm. This
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can, in principle, reduce the effect of computer arithmetic errors. If computer
arithmetic errors are larger than the other errors (such as measurement errors
and modelling errors) in the prediction of the redshift, then an algorithm incor-
porating pivoting may potentially be more accurate than an algorithm without
pivoting.

6 V Formulation

6.1 V Formulation without QR factorization

Previously, to solve the original equation to predict the redshift, we used
the Gaussian approach. This required forming an n × n covariance matrix K
by using some pre-defined formula Kij = k(xi, xj).

If xi
∗ is taken to be the ith row of X∗, then a p×n matrix K∗ can then

be formed by the following formula:

K∗
ij = k(x∗i , xj)

Substituting these K and K∗ in the original linear equation:

ŷ∗ = K∗(λ2I + K)−1y

But the size of (λ2I + K)−1is n × n, and for large n (in our case n =
180, 045), it is not practical to calculate (λ2I+K)−1 directly. Inverting a matrix
takes O(n3) floating point operations. When n is large, an O(n3) operation
quickly becomes intractable. This problem may be by passed using simple linear
algebra and the low rank approximations detailed in the previous section.

To do this we will approximate K with V V T where V is produced by the
partial Cholesky factorization. If pivoting was used in constructing V we will
assume, for simplicity of presentation, that K is the covariance matrix after its
rows and columns have been moved. Now K∗ is a p by n matrix. Let K∗

1 be
the first m columns of K∗ and let V11 be the m × m matrix consisting of the
first m rows of V , where m < n. Also let V ∗ = K∗

1V −T
11 . Now in addition

to approximating K with V V T we also approximate K∗ with V ∗V T . Using
these approximations we see that K∗(λ2I + K)−1y can be approximated by
V ∗V T (λ2I + V V T )−1y. We now have the following key Lemma:
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Lemma: V T (λ2I + V V T )−1 = (λ2I + V T V )−1V T

Proof

λ2V T + V T V V T = V T V V T + λ2V T

= (λ2I + V T V )V T = V T (V V T + λ2I)
= (λ2I + V T V )−1(λ2I + V T V )V T (λ2I + V V T )−1

= (λ2I +T V T V )−1V T (V V T + λ2I)(λ2I + V V T )−1

= V T (λ2I + V V T )−1 = (λ2I + V T V )−1V T

�

From this lemma, it follows that by substitution that:

Corollary: ŷ∗ = V ∗(λ2I + V T V )−1V T y

This corollary is the basis of the V Formulation method. The matrix
(λ2I + V T V )−1 is m × m rather than n × n, and so for small enough m, the
equation is tractable, and in fact can be solved quite quickly. The flop count
for solving this new equation is O(nm2).

We will refer to the above method as the V method (or as the VF method
in the labels of a few graphs).

6.2 QR Factorization in V Formulation

The condition number of V T V is the square of the condition number of
V , and so if V has a condition number that is sufficient large, then the V
formulation can potentially be numerically unstable. Therefore, it may be useful

to make the equation more stable. To do this let A =
(

V
λI

)
and let

b =
(

y
0

)
, where I is an m×m identity matrix and 0 is an m× 1 zero vector.

Here A is an (n + m) ×m matrix and b is a (n + m) × 1 vector. Consider the
least square problem:

min ||Ax− b||

where the norm (|| ||) indicates the usual Euclidean norm. The normal equa-
tions solution to this least squares problem is [Golub and Van Loan, 1996, p.
237] x = (AT A)−1AT b = (λ2I + V T V )−1V T y. Therefore

ŷ∗ = V ∗(λ2I + V T V )−1V T y = V ∗x = K∗
1V −T

11 x.

However, it can be more accurate to solve a least squares problem using the
QR factorization [Golub and Van Loan, 1996, p. 244]. In this approach [Golub
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and Van Loan, 1996, p. 239] one first factors A = QR where Q is an (n+m)×m
matrix with orthonormal columns and R is an m ×m right triangular matrix.

Then x = R−1QT b = R−1QT

(
y
0

)
so that

ŷ∗ = V ∗x = K∗
1V −T

11 x = K∗
1V −T

11 R−1QT b = K∗
1V −T

11 R−1QT

(
y
0

)
.

With the above algorithm ŷ∗ can still be solved quickly. The flop count for
solving this new equation is O(nm2). This algorithm will have better numerical
stability properties than the algorithm discussed in Section 7.1.

We will refer to the V method using a QR factorization as the VQ method.

7 Subset of Regressors

7.1 Subset of Regressor without QR Factorization

The subset of regressors method is similar to V Formulation in that an ap-
proximation of the traditional Gaussian processes equation is formed. However,
low rank approximation is not used directly, rather the matrices K, K∗ are
partitioned into submatrices, only some of which are used in the calculation.
Linear algebra can then be used to manipulate the original equation into an
approximately equal equation that may be solved.

Suppose there exists a n×m matrix V such that K = V V T (This is of
course not possible if K is of rank greater than m, and that is why the solution
given by this method is only approximate). Then:

ŷ∗ = V ∗(λ2I + V V T )−1V T y

We partition these matrices as follows:

K =
(

K11 K12

K21 K22

)
=

(
K1 K2

)
K∗ =

(
K∗

1 K∗
2

)
and V =

(
V11

V21

)
K11 is m×m.

K21 is (n−m)×m.

K1 is n×m.
K∗

1 is p×m.
V11 is m×m.
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It follows that:

(
K11 K12

K21 K22

)
=

(
K1 K2

)
=

(
V11

V21

) (
V T

11 V T
21

)
= V

(
V T

11 V T
21

)

Therefore K1 = V V T
11 and K11 = V11V

T
11, and similarly K∗

1 = V ∗V T
11.

Assuming V11 ∈ Rm×m is invertible we have K1V
−T
11 = V and k∗1V −T

11 = V ∗

Substituting into ŷ∗ = V ∗(λ2I + V V T )−1V T y yields:

ŷ∗ = K∗
1V −T

11 (λ2I + V −1
11 KT

1 K1V
−T
11 )−1V −1

11 KT
1 y

ŷ∗ = K∗
1 [V11(λ2I + V −1

11 KT
1 K1V

−T
11 )V T

11]
−1KT

1 y

ŷ∗ = K∗
1 [λ2V11V

T
11 + KT

1 K1]−1KT
1 y

ŷ∗ = K∗
1 [λ2K11 + KT

1 K1]−1KT
1 y

Note that λ2K11 + KT
1 K1 is an m ×m matrix, so that this method is

also O(nm2). Also note that V is not present in the final equation, so that it
does not need to be calculated. For that reason, the subset of regressors method
is the fastest of our methods. However, it is also the least stable.

Above we developed the subset of regressor method by first presenting the
V method. We should add that the subset of regressors method can be derived
directly from ŷ∗ = K∗(λ2I + K)−1y. To do this approximate K and K∗ using

K ∼= K̂ ≡ K1K
−1
11 KT

1

and
K∗ ∼= K̂∗ ≡ K∗

1K−1
11 KT

1 .

Next in ŷ∗ = K∗(λ2I + K)−1y we replace K with K̂ and K∗ with K̂∗ so that

ŷ∗ ∼= K̂∗(λ2I + K̂)−1y =

K∗
1K−1

11 KT
1 (λ2I + K1K

−1
11 KT

1 )−1y =

K∗
1K−1

11 (λ2I + KT
1 K1K

−1
11 )−1KT

1 y =

K∗
1 (λ2K11 + KT

1 K1)−1KT
1 y.

Also in this section note that if, in the subset of regressors formula, we
substitute K1 = V V T

11 and K11 = V11V
T
11 then the V formulation equations

follow from the subset of regressor formula.
Finally, we note that the above derivations show that the V formulation

and the subset of regressors formulas are mathematically equivalent, assuming
that the order of the columns and rows in K are the same when applying the
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formulas. This is the case, for example, if the V formulation uses Cholesky
factorization without pivoting to form V or if, assuming that pivoting is used
in the Cholesky factorization, then the columns and rows of K are pivoted in
the same manner prior to applying the subset of regressors formulas. Therefore
the primary difference is in the numerical properties of the formulas, which we
address shortly.

We will refer to the subset of regressors method, as outlined above, as the
SR method.

7.2 QR Factorization in Subset of Regressors

The subset of Regressors method using QR factorization requires only a
slight modification to the Subset of Regressors method. As in the previous
section, an approximation of the traditional equation is given by:

ŷ∗ = K∗
1 [λ2K11 + KT

1 K1]−1KT
1 y

Now we factor the m × m matrix K11 = V11V
T
11. The m × m matrix

V11 can be calculated by Cholesky factorization of K11. Now let A =
(

K1

λV T
11

)
and let b =

(
y
0

)
, where 0 is an m× 1 zero vector. Here A is an (n + m)×m

matrix and b is a (n + m)× 1 vector. Consider the least square problem:

min ||Ax− b||.

The normal equations solution to this least squares problem is [Golub and Van
Loan, 1996, p. 237] x = (AT A)−1AT b = (λ2V11V

T
11+KT

1 K1)−1KT
1 y = (λ2K11+

KT
1 K1)−1KT

1 y. Therefore

ŷ∗ = K∗
1 [λ2K11 + KT

1 K1]−1KT
1 y = K∗

1x

However, it can be more accurate to solve a least squares problem using the
QR factorization [Golub and Van Loan, 1996, p. 244]. In this approach [Golub
and Van Loan, 1996, p. 239] one first factors A = QR where Q is an (n+m)×m
matrix with orthonormal columns and R is an m ×m right triangular matrix.

Then x = R−1QT b = R−1QT

(
y
0

)
so that

ŷ∗ = K∗
1x = K∗

1R−1QT b = K∗
1R−1QT

(
y
0

)
.

With the above algorithm ŷ∗ can still be solved quickly. The flop count for
solving this new equation is O(nm2).

We will refer to the SR method using the QR factorization as the SRQR
method.
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8 Numerical Stability

8.1 Squaring the condition number

Consider the subset of regressor method without QR (SR), the subset of regres-
sor method with QR (SRQR) and the V formulation (V). They all provide a
solution to

min ||Ax− b||

where A =
(

K1

λV T
11

)
and let b =

(
y
0

)
, where 0 is an m×1 zero vector. Here

A is an (n + m)×m matrix and b is a (n + m)× 1 vector.

SR: x = [λ2K11 + KT
1 K1]−1KT

1 y

SRQR: x = R−1QT

(
y
0

)
V: x = V −T

11 (λ2I + V T V )−1V T y.

Here A = QR where Q is a (m + n)×m matrix with orthonormal columns and
R is a m×m right triangular matrix. Also K1 = V V T

11 and K11 = V11V
T
11 where

V is an n×m matrix and the m×m matrix V11 is the first m rows of V .
The SR formula is just the normal equation solution to the above least

squares problem and the SRQR formula is the QR solution. As indicated in
[Golub and Van Loan, 1996, p. 244-245] there is potential for numerical insta-
bility in using normal equations (since the error growth is always governed by
the square of the condition number of A) whereas as use of the QR factorization
is numerically stable. Here the phrase “numerical stability” is used to indicate
that the algorithm produces a calculated answer that is close to the accuracy
of the answer permitted by the condition number of the problem (see [Golub
and Van Loan]). Therefore we should expect that the SRQR formulation will
produce more accurate results than the SR formulation.

To consider the V formulation we will begin by considering the special case
where λ = 0 and later consider the more general case. In the case that λ = 0
we have:

V: x = V −T
11 (V T V )−1V T y.

where K1 = V V T
11. There is a potential concern in using this equation since to

construct x the linear system of equations

(V T V )z = V T y

must be solved. Forming V T V squares the condition number of V which, poten-
tially could lead to the introduction of undesirable computer arithmetic errors.
However we will argue that the matrix B = V T V is diagonally equivalent to
matrix that, in practice, is well conditioned and that this will limit the growth
of computer arithmetic errors.
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Now V is formed by a partial Cholesky factorization of the symmetric semi
definite (SSD) matrix K. If pivoting is included in the partial Cholesky factor-
ization of the SSD matrix it follows, for each i = 1, . . . ,m, that the ith diagonal
entry is at least as large in magnitude as any off diagonal entry in row i or col-
umn i [Trefethen, 1996, p. 176]. From properties of the Cholesky factorization it
then follows that the lower trapezoidal matrix V has the property that, for each
i = 1, . . . ,m, the ith diagonal entry in V is at least as large in magnitude as any
entry in column i. Therefore we can write V as V = WD where D is an m×m
diagonal matrix and W is an n×m lower trapezoidal matrix with all entries one
or less in magnitude and with ones on the diagonal. Indeed this matrix W is
identical to the lower trapezoidal matrix produced if Gaussian elimination with
partial pivoting is applied to K1 (and indeed, in this case, Gaussian elimination
with partial pivoting will not pivot any entries). However it is known [Tre-
fethen, 1997, p. 169] that, in practice, the lower trapezoidal matrices produced
by Gaussian elimination with partial pivoting are well conditioned.

Thus V is a diagonal rescaling of a well conditioned matrix W . Now it follows
that we can write V = WD1D2 where the entries of the diagonal matrix D1 are
between 1 and 2 and where entries in D2 are exact powers of 2. Since W is well
conditioned then so is U = WD1 (since cond(WD1) ≤ cond(W )cond(D1) ≤
2 cond(W )). Now note, since V T V is symmetric positive definite, that algo-
rithms for solving V T V z = V T y do not require pivoting. However, in this case,
scaling V T V by exact powers of two does not effect the numerical stability of the
solution z to V T V z = V T y [Forsythe and Moler, 1967, pp. 37-46]. Therefore
the growth of computer arithmetic errors in solving V T V z = V T y is indicated
by the condition number of UT U (the rescaling of V T V by exact powers of two).
However since U has a modest condition number (since it is well conditioned in
practice) so does UT U (since its condition number is the square of the condition
number of U).

The conclusion from the above argument is that we do not square the condi-
tion number of a ill-conditioned matrix in the V formulation and that we expect
that this will limit the error growth in using the V formulation.

To consider the case that λ 6= 0 we note that in this case the condition
number of B = (λ2I + V T V ) will be important in solving

(λ2I + V T V )z = V T y.

However we have

Theorem 1 For any λ ≥ 0, cond(λ2I + V T V ) ≤ cond(V T V ).

Proof. If V T V has eigenvalues α1 ≥ α2 ≥ . . . ≥ αm ≥ 0 then the eigenvalues
of (λ2I + V T V ) are (λ2 + αi), i = 1, . . . ,m. Therefore cond(V T V ) = α1/αm

and cond(λ2I + V T V ) = (α1 + λ2)/(αm + λ2). However it follows easily that
α1/αm ≥ (α1 + λ2)/(αm + λ2).

Since cond(λ2I+V T V ) ≤ cond(V T V ) we expect that solving (λ2I+V T V )z =
V T y with λ 6= 0 will be more accurate than solving this equation with λ = 0.
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Since we have argued that the error growth in solving this equation for λ = 0
should be limited we expect that this should also be true when λ 6= 0.

In summary, the above argument indicate that the SRQR and V formulations
should have better numerical stability properties than the SR formulation. This
will be supported by the numerical experiments that we present later.

We should add that the SR formulation has the advantage that it can be
more efficient and require less memory than the other approaches. We will see
this in our later experiments and also see that the V formulation can also be
quicker and require less memory than the SRQR method.

8.2 Pivoting

When using the SRQR formulation we solved the least squares problem

min ||Ax− b||

using the QR factorization. Although the SRQR formulation should have im-
proved accuracy compared to the SR formulation, the accuracy of the solution
to min ||Ax− b|| still depends on the the condition number of A (see [Golub and
Van Loan, 1996, p. 236-245] for details). Therefore it may be useful to try to

control the condition number of A =
(

K1

λV T
11

)
.

Also in the V formulation after one solves for z in (λ2I + V T V )z = V T y to
calculate x one must solve

V11x = z.

Therefore the condition number of V11 will be a factor in the accuracy of the
calculated x. We did not include this in our earlier analysis.

For the above reasons we would like to limit the condition numbers of A and
V11. These condition numbers can be affected by the ordering of the columns of
the covariance matrix K. For example consider the simple 3 by 3 SSD matrix

K =

 1 0 0
0 0 0
0 0 1

 .

If we consider a rank two approximation to K, without reordering the columns
and rows of K, then it follows easily that

V11 =
(

1 0
0 0

)
,

K1 =

 1 0
0 0
0 0


and

A =
(

K1

λV11

)
.
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Therefore in this case V11, K1 and A are all exactly singular and therefore
have condition numbers = ∞. Therefore an algorithm which used the first two
columns of K, ignoring this singularity, would fail.

Now consider a reordering of K, switching the second and third rows and
columns. For K̃, the reordered K we have

K̃ =

 1 0 0
0 1 0
0 0 0

 .

If we consider a rank two approximation to K̃ then it follows easily that

Ṽ11 =
(

1 0
0 1

)

K̃1 =

 1 0
0 1
0 0


and

Ã =
(

K̃1

λṼ11

)
.

After reordering the new matrices Ṽ11, K̃1 and Ã are well conditioned. For
example cond(Ṽ11) = cond(K̃1) = 1.

As mentioned in Section 5.5 the partial Cholesky factorization with pivoting
can be used to reorder the columns of K in a suitable manner.

8.3 Related methods

The V formulation is related to a general least squares algorithm due to Peters
and Wilkinson [Bjork, 1996, pp. 73-76]. Also the formulas in [Wahba, 1990,
p. 136] are related to to our V formulation formulas. The formulas in [Wahba,
1990, p. 136] were used to develop practical techniques for the computations
related to generalized cross validation.

9 Choice of Rank

In using low rank approximation the choice of rank will affect the accuracy of the
approximation. It may be impractical to repeat the computations for a variety
of different ranks and is useful to have techniques to facilitate determination of
the accuracy of a variety of low rank approximations.

It is well known that there are efficient techniques to remove columns (down-
date) and add columns (update) in solving general least squares problems [Bjork,
1996, pp. 127-152]. These techniques can be adapted to calculations for all of
our low rank approximation techniques (V, VQ, SRQR). For example one can
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calculate the solution for a rank m low rank approximation and use these tech-
niques to calculate the rmse (root mean square errors) of the approximations for
low rank approximation for all ranks k, k = 1, . . . ,m. This can be implemented
efficiently and require only a small additional amount of computing time. We
have included this option in our code.

10 Optimization of Hyperparameters

The hyperparameters for any particular covariance function K may be op-
timized by minimizing the output of a function φ which takes as input a vector
of hyperparameters θ0 and outputs ŷ∗K , the root mean square error of the ap-
proximation with respect to K. We used two available MATLAB functions,
fminsearch.m and minimize.m, to accomplish this and find a good value of θ to
use.

10.1 Nelder-Mead Simplex Minimization

The standard MATLAB function fminsearch uses an initial estimate to min-
imize a multi-variable function, which is known as unconstrained nonlinear opti-
mization. The algorithm used by fminsearch is the Nelder-Mead simplex[Nelder
and Mead, 1965] search method, which does not make use of gradients. This
method becomes extremely slow as the number of hyperparameters increases,
but it can output the true optimum values but it is possible for fminsearch.m
to output a local minimum.

10.2 Marginal Likelihood and Minimize

Marginal likelihood p(y|X, θ) is the probability of observing a set of red-
shift measurements in y given photometric filter observations X and a series
of hyperparameters, stored as a vector θ. To better predict the values of red-
shifts y, one can set X and y as fixed constants whose values are determined
by previously-observed training data sets and maximize the marginal likelihood
function, setting θ as a variable. An “optimal” set of hyperparameters can
then be found. One can alternatively determine optimal hyperparameters by
maximizing the natural logarithm of the likelihood function, which according to
[Rasmussen and Williams, 2006, p. 113] is:

log p(y|X, θ) = − 1
2y>A−1y − 1

2 log det(A)− n
2 log 2π
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We utilize minimize.m, a Matlab program that minimizes a multivariate
differentiable function provided by Rasmussen [2006], to minimize the negative
logarithm of the marginal likelihood function–an equivalent procedure to the
maximization of the original marginal likelihood function–and thus determine
optimal hyperparameters given each of the covariance functions under consider-
ation. Computer memory issues have limited the minimization process to 2000
data training points in X and y.

10.3 Optimization Method

The speed of minimize.m allowed us to use it to calculate good values
for the vector of hyperparameters θ for each method and covariance matrix
at our disposal. The vector θ was used to compare the ability of different
method/covariance matrix combinations to predict y∗. The function fmin-
search.m can then be used with the combinations which seem to best predict y∗

in order to attempt to improve the accuracy. However, the new results found
with fminsearch did not constitute a significant improvement.

We should note that minimize is not tailored to any of the low rank approx-
imation algorithms. To choose the hyperparameters using minimize one must
selected a subset of the data (for example 500 galaxies). Minimize then uses
the traditional Gaussian process formula in it optimization calculations. This
procedure was followed in the examples presented in [Rasmussen and Williams,
2006, p. 182-184]. We also followed this procedure. Although it might be of
interest to develop a method for selecting hyperparameters that is tailored to
low rank approximations we did not do so in this project.

With fminsearch there is the danger of overfitting since fminsearch, as we
used it, makes use of y∗. Our hypothesis was that the dataset of 180,045 inputs
was sufficiently large to ensure that overfitting would not result in significantly
different results for new datasets. This hypothesis was confirmed by splitting y∗

into two smaller datasets indexed by I1 and I2, where I1 and I2 are distinct in-
dexes containing 10, 114 numbers and 10, 115 numbers respectively (recall that
y∗ contains 20, 229 elements total). We used fminsearch to find optimized hy-
perparameters, θI1 and θI2 , corresponding to y∗(I1) and y∗(I2), respectively.
The number |θI1 − θI2 |, if large enough, is clear evidence of overfitting in our
optimization. However, in our case |θI1 − θI2 | was not large enough to be sig-
nificant in terms of our computations (on the order of 10−3 or 10−4 in each
case), especially with regard to the V formulation and V formulation with QR
factorization methods, which are relatively independent of the hyperparameters
chosen.

Our calculations with covariance functions made use of the covariance func-
tions that are included with the software associated with [Rasmussen and Williams,
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2006]. The hyperparameters that we calculated include λ and other parame-
ters that are detailed in Rasmussen and Williams software. We refer the reader
to http://www.gaussianprocess.org/gpml/code/matlab/doc/ for a detailed def-
inition of the hyperparameters. Some of Rasmussen and Williams’ covariance
functions came with two versions. The ARD (for automatic relevance deter-
mination) version had more hyperparameters the the simpler versions. Also
Rasmussen and Williams find it convenient to use the logarithm of hyperpa-
rameters as input to there routines. Below is a list of the logarithms (base e)
of the hyperparameters used in our calculations. The are three sets: the first
set determined by using minimize with 500 galaxies, the second determined by
using minimize with 1000 galaxies and the third determined by using minimize
with 2000 galaxies.

Most of the runs reported later were done using the first set of hyperpa-
rameters below. For the algorithms that are numerically stable (gprSRPP1,
gprSRPP1b, gprSRPP2, gprSRPP3, and gprSRPP4 described in the Appendix)
we did not find a significant change in the accuracy of our results if we we used
the other sets of hyperparameters. However, we should note that for gprSRPP
the choice of hyperparameters can be more important. For example gprSRPP
often exhibits numerical instability when using the hyperparameters in the first
set below (selected by using the minimize function with 500 galaxies). How-
ever, the numerical stability of gprSRPP appears to be improved when using
the other sets of hyperparameters.

Hyperparameters: calculated using 500 galaxies

Covariance Matrix log θ1 log θ2 log θ3 log θ4 log θ5 log θ6 log θ7 log θ8

Rational Quadratic ARD 1.2622 0.7822 1.3818 1.6949 2.0585 -0.3107 1.7217 -3.8937

Rational Quadratic 0.9275 -1.0322 3.1650 -3.8940

Squared Exponential ARD 0.9828 0.4503 1.0168 1.2166 1.4851 -0.8526 -3.9216

Squared Exponential 0.9144 -1.0045 -3.8963

Matern 3 2.9316 0.3722 -3.9180

Matern 5 1.7937 -0.4499 -3.8965

Neural Net -1.1236 0.0033 -3.9939

Polynomial, r = 2 -5.2931 -11.4373 -3.9051

Polynomial, r = 3 0.0890 -5.0957 -3.8984
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Hyperparameters: calculated using 1000 galaxies

Covariance Matrix log θ1 log θ2 log θ3 log θ4 log θ5 log θ6 log θ7 log θ8

Rational Quadratic ARD 0.8850 0.4836 1.0141 1.4115 1.8591 -0.9770 1.2229 -3.9560

Rational Quadratic 1.0946 -0.9851 0.2097 -3.9430

Squared Exponential ARD 0.5588 0.1978 0.8059 1.1540 1.4546 -1.3919 -3.9496

Squared Exponential 0.6896 -1.3313 -3.9473

Matern 3 2.6163 -0.0748 -3.9601

Matern 5 1.5403 -0.8202 -3.9476

Neural Net -2.9613 -0.5618 -4.1775

Polynomial, r = 2 -5.5591 -11.4599 -3.9182

Polynomial, r = 3 -1.3607 -7.7182 -3.9218

Hyperparameters: calculated using 2000 galaxies

Covariance Matrix log θ1 log θ2 log θ3 log θ4 log θ5 log θ6 log θ7 log θ8

Rational Quadratic ARD 0.3942 0.4083 0.6969 1.0122 1.3051 -1.0845 0.8351 -3.9720

Rational Quadratic 0.7061 -0.9527 0.1628 -3.9692

Squared Exponential ARD 0.1247 0.2648 0.6504 0.9302 0.9864 -1.2208 -3.9639

Squared Exponential 0.2725 -1.3061 -3.9765

Matern 3 1.8813 -0.6291 -3.9842

Matern 5 1.1055 -0.9277 -3.9724

Neural Net -2.8870 -0.5853 -4.1261

Polynomial, r = 2 -3.7483 -8.3263 -3.8932

Polynomial, r = 3 0.6935 -0.4289 -3.9343

11 Timings

The tic toc commands in MATLAB were used to time different methods under
the same conditions. The times shown in the table below represent the amount
of time it took to calculate ŷ∗, the predicted redshift. (Note that the routines
described in the appendix can also be used to calculate estimated variances.
The timings below are only the times for calculating the predicted redshifts and
do not include times to calculate the variances.) In terms of speed, the methods
used this semester were at least as good as those from last semester. The
following table lists the computing times when using the quadratic covariance
function with rank = 21 and three different subsets of the entire dataset of
180045 galaxies :
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Computing times for the quadratic covariance function
with rank = 21

Method \ Size of subset of the data set 1000 10,000 180,045
V Formulation (with pivoting) 0.1410 0.2340 4.3280
V Formulation (no pivoting) 0.2340 0.1560 1.5000
V Formulation (with pivoting) using QR Factorization 0.5930 0.1560 2.0470
Reduced Rank with Cholesky 0.5620 0.2650 4.5940
Reduced Rank 0.0940 0.1570 1.5470
Cholesky Update with Partial Cholesky 0.3120 0.4690 10.2810
Cholesky Update with QR Factorization 0.1250 0.3440 6.5460
Subset of Regressors (no pivoting) 0.0150 0.0460 0.2660
Subset of Reg. (no pivoting) using QR Factorization 0.0470 0.2500 5.1250
Subset of Regressors (with pivoting) 0.0780 0.2500 4.3750
Conjugate Gradient with Partial Cholesky 0.7030 0.8440 21.3600
Conjugate Gradient 0.1410 0.6720 14.1090
Gibb’s Sampler 241.5460 232.1250 232.5150

Using results in the above table we can picture several of the methods (SR
and V) introduced in this semester’s project with several of the methods used
in the first semester’s portion of the project (RR- reduced rank, CU - Cholesky
update, CG - conjugate gradient):

Figure 1: Times of two methods used in the current semester and three methods
used in the previous semester.
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Note that the SR and V method are faster than the methods (RR, CU and
CG) used in the first part of this project. The times of the V method and the
RR method are close but it should be added that the RR method can be less
accurate than the V method.

We have done additional timings that compare the SR, V method without
pivoting, SRQR, and the V method with pivoting (using the column and row
order determined by the partial Cholesky factorization with pivoting). In the
results reported below and in later sections for the SR, V method without piv-
oting, and SRQR method we left the column and row ordering of the covariance
matrix unchanged (no pivoting). Also in all our results reported below and in
later sections “V method” will refer to the V method with pivoting, unless we
explicitly indicate no pivoting. Also the “VQ method” will refer to the using
the QR factorization in the V method (see Section 6.2) with pivoting. In some
cases we also did timings of the result of calculating the RMSE errors for all
low rank approximations less than a specified rank. In the graphs we have used
“history” to indicate these calculations. These calculations were done using the
neural network covariance function and with a rank of 100 and also with a rank
of 1000.

Figure 2: Comparision of the times of four methods for the neural network
covariance function with rank = 100

We see from these plots that the extra computations involved in calculating
the RMSE errors for all lower order approximations is small compared to the
time for the initial calculations in computing the low order approximation. We
also see that the SR method is the fastest, the V method without pivoting is
next fastest and this is followed by the SRQR method. The V method with
pivoting is slowest.

We should add that part of the reason that the V method with pivoting is
slower is that Matlab does not have a built in routine for the Cholesky factor-
ization with pivoting. We therefore wrote the code to do this using Matlab’s
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Figure 3: Comparision of the times of four methods for the neural network
covariance function with rank = 1000

interpreted code which is slower than compiled code. Although we did not do
so, it is possible that one could write this code in a compilable language like For-
tran or C (and then use Matlab’s MEX utility). Such code would significantly
reduce the run times for the V method with pivoting.

12 Accuracy and Stability

12.1 Bootstrap resampling results

One possible way to minimize the error in our prediction is to simply use the
entire training dataset of 180,045 broadband measurements to train each of our
methods to predict future redshifts given a separate set of broadband “testing”
points. A limitation of this approach is that essentially only one sample is
available from which to gauge the accuracy of our methods in the general case.
It may be the case that if different training data were introduced, the result
would be quite different. Although we have a limited set of data, somehow we
want to determine how the method will respond to new sets of data.

Given the size of our training dataset, it is reasonable to assume that
it is a representative sample of the galaxies in the known universe, so that the
galaxies with the various properties contained in the dataset occur in the uni-
verse at approximately the same frequency. If this hypothesis is correct, then
a statistical inference technique called bootstrap resampling may be employed.
Bootstrap resampling takes the data that we have as the total known “popula-
tion,” from which we can randomly sample to generate new training datasets.
The standard approach to bootstrap resampling is to sample with replacement.
If the size of the sample is less than the size of the training set one could also
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use resampling without replacement. Using each of these bootstrap samples,
all of size 180,045, we can test our methods by fitting a prediction model, and
compare the errors between the predictions and the actual redshifts. In this way
we no longer rest all of our inferences on a single result for each method; instead
we have a range of values, similar to the situation of having multiple datasets
from which to choose. The bootstrap method is implemented as follows.

With each method, we generate a random sample of galaxy broadband
measurements and corresponding redshifts from the entire 180,045 dataset, X;
each sample is of size 180,045 and we adhere to the property of traditional
bootstrapping of replacement, in which a galaxy can be selected more than
once for a sample. We then run the model on a separate testing dataset, which
we call X∗, to predict the corresponding redshifts of each galaxy. These redshift
predictions generated by the model are then compared to the actual observed
redshifts y∗ by calculating the root mean square error (RMSE) ||y∗ − ŷ∗||/√p
where the norm is the usual Euclidean norm and p is the number of entries in
y∗ and ŷ∗ . For each selected algorithm and covariance function we repeat the
above process 100 times, choosing a different random sample from X for each
of the 100 repetitions.

Figures 4-7 show the results of the 100 bootstrap runs of both the V
Formulation and Subset of Regressors method using several different covariance
functions. The covariance function which performed best in these trials was the
neural network covariance function. The 100 model runs are ordered from low
to high according to RMSE. While the SR method matches the V method with
QR factorization (the VQ method) in terms of accuracy for the best 40 runs,
the second half of the runs produced steadily worse errors. We attribute this
lack of stability to computer arithmetic issues inherent in the SR method. For
the neural network covariance function, due to the instability of the SR method,
its RMSE error is driven up to .0267. The V Formulation method is shown to
be both stable and accurate. For the neural network covariance function the
RMSE error equal to .0215 with the V method and the variation over individual
samples is less than .001. The covariance function which performed best with
all methods was the Neural Net covariance function, as shown in figure 7.

Comparing the bootstrap accuracy results of the SR and V methods
with methods explored in the first semester of the project [Cayco, So, et. al.,
2007] such as Cholesky Update and Conjugate Gradient (figure 8), we find that
the V Formulation provides an absolute improvement in both accuracy and sta-
bility. The subset of regressors method is lacking in both accuracy and stability,
especially when the covariance matrix used is of low rank. The quadratic kernel,
for example, is of rank 21, and the SR method performs badly with the quadratic
kernel as is clearly indicated in figure 8. However, when a larger rank is used
such as a low rank approximation of the Neural Network covariance function
with m = 100, the accuracy and numerical stability is greatly improved as in
figures 4-7.
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Figure 4: Bootstrap resampling with the Rational Quadratic covariance func-
tions, rank = 100.

Figure 5: Bootstrap resampling with Squared Exponential covariance functions,
rank = 100.
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Figure 6: Bootstrap resampling with Matern class covariance functions, rank =
100.

Figure 7: Bootstrap resampling with the Neural Net and Quadratic covariance
functions, rank = 100.
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Figure 8: Bootstrap resampling for various other methods with the Quadratic
kernel, rank = 100

VF: V Formulation
VQ: V Formulation with QR Decomposition

SR: Subset of Regressors
RR: Reduced Rank

CU: Cholesky Update
CG: Conjugate Gradiant
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The most accurate covariance function in the above graphs was the neural
network covariance function. The following graph provides more detail for this
covariance function using the SR and V method with rank = 100. For compar-
ison we also include the result of the V method using the quadratic covariance
function with rank = 21 (the mathematical rank of the quadratic covariance
function is 21). Note that the graph clearly indicates that the inaccuracy of
the SR method approximately 80 of the 100 samples and also indicates that the
neural network kernel is more accurate than the quadratic kernel.

Figure 9: Bootstrap resampling for neural network kernel, rank =100, with the
SR and V methods, and the Quadratic kernel, rank = 21, V method.
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12.2 The choice of rank

As mentioned in Section 9 and Section 11 we can calculate the RMSE errors
corresponding to all lower rank approximations with a modest amount of extra
effort. This can be used to illustrate the effect of varying the rank of the low
rank approximation. For example we can do bootstrap resampling with a low
rank approximation with rank m = 1000 and also obtain the result of bootstrap
resampling with any lower rank.

Figure 10: Bootstrap resampling with the neural network covariance function
and ranks 100, 200, 500 and 1000 and, for comparison, the SR method with
rank 500.

We can also use these calculations to plot the median rmse error versus rank.

Figure 11: The median rmse error versus rank.

For the neural network covariance function the above results indicate that
the approximations become significantly more accurate as the ranks increase
from 100 to 200 and to 500, but that the improvement in accuracy is small for

36



ranks larger than 500. Also note that Figure 10 again indicates the potential
instability of the SR approach.

We should note that due to memory limitations with our rank = 1000 com-
putations, we reduced the training set size to 36009 for the above runs. Also
note that in the above runs we used bootstrap resampling without replacement.

12.3 The effect of pivoting

The following figure compares the result of using the V method without pivoting
and the V method with pivoting:

Figure 12: Comparison of the V method without pivoting and the V method
with pivoting with the neural network covariance function and ranks of 100, 200
and 1000.

These results suggest that, for the redshift data, the effect of pivoting is
relatively small. The effect of pivoting is less than one percent in the results
pictured in Figure 12. When using rank 100 low rank approximations the pre-
dictions are slightly worse with pivoting. On the other hand for the rank 1000
approximations the predictions are slightly better when pivoting is included.
The reason for result like those pictured in Figure 12 deserves further study.

12.4 The choice of the testing set size

The training set for the redshift calculations is large – it consists of more than
180000 galaxies. Is all this data necessary to develop a good model?

We can explore this by repeating calculation using training sets of various
sizes. The results of this calculation is summarized in the Figure 13.
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Figure 13: The effect of varying the training set size.

This figure suggests that the entire data set is not needed to get good ap-
proximations. Indeed after the training set size is approximately 36000 ( 20 %
of 180045 ) the is little or no improvement in the accuracy of the approximation
as the training set size is increased. Indeed, the accuracy of the predictions
decreases a small amount as the size of the training set is increased beyond
a minimum point for each rank pictured. Potentially this could be related to
selection of hyperparameters, which, as discussed in Section 10, were selected
using a small (500 for most of our runs) subset of the data. This topic also
deserves further investigation.

12.5 Comparison with Traditional Method

Although it is not practical to use the traditional Gaussian processes method
with all of the available training data, it is possible with a small subset of the
training data. In the following graph, 4000 of the 180, 045 rows of X were
selected randomly without replacement to form X(I) for some index I. The
equation ŷ∗ = K∗(λ2I + K)−1y was then used with K being the covariance
matrix of X(I). This process was repeated 100 times with different random
indices (figure 14).
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Figure 14: Bootstrap resampling (without replacement) with training sets con-
sisting of 4000 galaxies.

A subset of 4000 inputs is the practical limit given the available resources.
With 4000 galaxies the accuracy is worse than that of the V Formulation with
low rank approximations of ranks 200, 500 or 1000 (see figure 10). We can also
redo the computations for training set sizes of less than 4000 galaxies to obtain
the results in figure 15.

Figure 15: Error versus training set size. As the training set increases in size,
the RMS seems to converge to 0.021.

However, this is not to say that the traditional method does not show
any promise. It is not necessary to choose the training set randomly, as was done
in the tests graphed below. There may be a way to choose a particular training
set which is ideal in some way, and in that case the traditional method (or the
V formulation with dramatically increased rank) may be more effective. One
possible way to do this is to use the partial Cholesky decomposition to find an
index of X which places the most linearly independent rows first. Unfortunately,
the practical limit on the partial Cholesky decomposition on a 180, 045 × 5
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matrix is only m = 1000 or so, and so the effectiveness of this method may not
currently be tested.

12.6 Comparison with alternate approaches

In [Way and Srivastava, 2006] redshift prediction are made with a variety of
traditional and novel approaches. These approaches include traditional linear
regression, traditional quadratic regression, artificial neural networks, an E-
model approach and Gaussian processes using the quadratic kernel. See [Way
and Srivastava, 2006] for details. In figure 16 we compare the results of our
Gaussian process calculations with their results. The results labeled GP-V are
our results using the neural network covariance function with rank 1000 using
the V method with pivoting (and without using a QR factorization). The other
results pictured are obtained from [Way and Srivastava, 2006]

Figure 16: Comparison of a variety of methods of redshift prediction.

The primary conclusion from this figure is that our results are competitive
with the best known alternative results.

13 Outliers

Removing outliers from the testing matrix X∗ may allow us to significantly
lower the root mean square error of our prediction. Outliers may be calculated
by sorting the vector y∗ − ŷ∗. The graphs of y∗ − ŷ∗ so far indicate that there
is a set of outliers which is constant relative to choice of method and kernel.
In other words, it is so far evidenced that there is a set of outliers common
to the general method of approximating y∗ as a Gaussian Process.The sorted
graphs indicate that a significant set of outliers exist for each method and each
covariance function. In fact, if 10 percent of the outliers are removed from the
testing data, the RMS error on the remaining points drops to nearly 0.016. It
cannot be concluded from the sorted graphs that the set of outliers is invariant
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with respect to choice of covariance function or method. However, the unsorted
graphs do indicate that the outliers are a common set of points regardless of
which covariance function is chosen and which method is used. This is because
the “spikes” in these graphs tend to overlap.

Figure 17: Graph which shows the presence of outliers.

Figure 18: Graph which shows the distribution of outliers.

13.1 Characterizing Outliers

Given the hypothesis that there is a constant set of outliers, they still may
not be discarded unless they can be characterized, so that all inputs sharing a
particular characteristic may be removed from the testing set. Let I be a vector
corresponding to the index of the sorted y∗ − ŷ∗ vector, with ŷ∗ corresponding
to the Neural Net covariance matrix and V-formulation with QR factorization.
The input columns of the testing data corresponding to u, g, r, i,z were each
sorted by the index I, meaning that the outliers should correspond to the first
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and last thousand entries or so of each of these resorted columns. However,
examining the columns one at a time does not reveal any pattern. It is possible
that some sort of multivariate correlation analysis would be able to detect a
more complicated pattern among these columns. Similarly, ŷ∗ was resorted
by the index I, and no pattern was readily apparent. This data can also be
included in a more in-depth analysis. One approach that might help is to block
groups of galaxies. It is also possible to view the characterization of outliers as
a classification problem, and this idea is addressed later in this section.

Figure 19: Columns of X∗, y∗ and ŷ∗ for the testing set.

However, if the inputs of these graphs are blocked together, and the output
is taken to be the norm of these blocks, then a pattern begins to emerge.
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Block Size = 20

Figure 20: Columns of X∗, y∗ and ŷ∗ for the testing set in blocks of 20.

A slight U-shaped pattern appears in the columns of X∗. A linear
correlation seems to exist in y∗, although this has limited usefulness since y∗ is
not available for characterization purposes.

Figure 21: Columns of X∗, y∗ and ŷ∗ for the testing set in blocks of 100.
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A stronger pattern exists here, especially in columns 3, 4, and 5.

Figure 22: Columns of X∗, y∗ and ŷ∗ for the testing set in blocks of 505.

The norm of a the set of 505 entries which all correspond to the outliers
in the fourth column of X∗, for example, is greater than 375 even if we take 20%
of the set to be outliers. It may thus be reasonable to take this as a necessary
condition for a set which contains only outliers. Moreover, it seems reasonable
that for a set which contains a percentage α% of non-outliers, the norm must
be at least (1−α)375+(α)371.5

2 .
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13.2 Classifying Outliers

Calculating the outliers of a testing set X∗ can be viewed as a classification
problem. In other words, given training data X and a vector ỹ with the property
that ỹ(i) = 1 if xi is an outlier, and ỹ(i) = 0 if xi is a non-outlier, and similarly
with testing data X∗ and ỹ∗ , calculate an approximation of ỹ∗. This can be
recast as a regression problem by taking ỹ = |y − ŷ|, where ŷ is an approximation
of y, and ỹ∗ = |y∗ − ŷ∗|. To calculate ỹ it is thus necessary to take a subset of
the training data, and use one subset as training data to approximate another as
testing data. This is equivalent to solving the classification problem, because it is
the index of ỹ∗ that is used to define outliers and non-outliers. Therefore, the V
Formulation can be used indirectly to classify the outliers. First, approximate ỹ∗

as γ. It then follows that the index of the sorted γ can be used to predict a set of
outliers in X∗(those highest in the index), and after these have been removed the
original regression problem may be solved. This results in a significant reduction
in rms error if 10% of the data is removed, as shown in figure 13. This method
may be further refined by recursively finding outliers in the approximated set of
outliers, adding these back in, finding outliers in that set and taking them back
out, and so on.

Figure 23: Bootstrap resampling with outliers removed.
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14 Appendix - Code

Code implementing and illustrating the above ideas is available at
www.math.sjsu.edu/~foster/camcos07/redshift.html.
The easiest way to get started using the code is to download and unzip the
zip file from the site, start Matlab (7.0 or higher), move to the appropriate
folder and type either “demo bootstrap” or “demo history” to run one of the
demonstration files.

Code in the zip file is based on the code used in the text Gaussian Processes
for Machine Learning by Rasmussen and Williams [Rasmussen and Williams,
2006] (www.gaussianprocess.org/gpml/). So that the demonstrations are self
contained and do not require that the user download additional code, the zip file
contains a few functions that are copied directly from Rasmussen and Williams’
web site.

Note that a number of the functions (gprSRPP0, gprSRPP1, gprSRPP1b,
gprSRPP2, gprSRPP3, and gprSRPP4) are written to be compatible, including
usage and parameter lists, with Rasmussen and Williams function gprSRPP
which does low rank approximation. In Rasmussen and Williams’ code, exam-
ples and demonstrations any call to Rasmussen and William function gprSRPP
can be replaced by a call to one of these functions. There are additional op-
tions available in our code that are not part of Rasmussen and Williams code.
However one one does not need to use these.

Below we we briefly describe each of the files available from
www.math.sjsu.edu/~foster/camcos07/redshift.html.
Additional descriptions for the files are contained in the code.

Demonstration files:

Bootstrap \ accuracy demo: demo bootstrap.m - demonstration pro-
gram comparing the numerical stability and accuracy of various algorithms for
Gaussian process regression algorithms using low rank approximation and illus-
trating bootstrap resampling.

History demo: demo history.m - demonstration program illustrating a fea-
ture that allows efficient calculation of the accuracy of all low rank approxima-
tions less than or equal to a specified rank when using gprSRPP1. (This feature
is also available in gprSRPP1b, gprSRPP2, gprSRPP3, and gprSRPP4.)

A data file:

redshift data.mat – contains the training set data X and y and the test-
ing set data Xtest and ytest for the redshift problem. Also the logarithms of
hyperparameters listed in Section 10 are included in the structure loghyper.
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Functions:

The SR method: gprSRPP0.m – Carries out approximate Gaussian pro-
cess regression prediction using the subset of regressors (SR) or projected process
approximation (PP) with the active set specified by the user. gprSRPP0 is a
minor change from the gprSRPP code provided by Rasmussen and Williams.
gprSRPP0 avoids repeating certain calculations.

The V Method without pivoting: gprSRPP1.m - Carries out approxi-
mate Gaussian process regression prediction using the subset of regressors (SR)
or projected process approximation (PP) with the active set specified by the
user. This version uses a variation of the Peters-Wilkinson approach for solving
least squares problems to increase the numerical stability of the algorithm.

The V method without pivoting (implemented using partial Cholesky
factorization without pivoting): gprSRPP1b.m - Carries out approximate
Gaussian process regression prediction using the subset of regressors (SR) or
projected process approximation (PP) with the active set specified by the user.
This version uses a variation of the Peters-Wilkinson approach for solving least
squares problems to increase the numerical stability of the algorithm. The
version uses a partial Cholesky factorization without pivoting to factor the
columns of the covariance matrix specified by the user. This code is slower
than gprSRPP1 but requires less memory.

The V method with pivoting: gprSRPP2.m - Carries out approximate
Gaussian process regression prediction using the subset of regressors (SR) or
projected process approximation (PP) with the active set selected by a partial
Cholesky factorization with pivoting. This version uses a variation of the Peters-
Wilkinson approach for solving least squares problems (and partial Cholesky
factorization with pivoting) to increase the numerical stability of the algorithm.

The SRQR method: gprSRPP3.m - Carries out approximate Gaussian
process regression prediction using the subset of regressors (SR) or projected
process approximation (PP) with the active set specified by the user. This ver-
sion uses a QR factorization to increase the numerical stability of the algorithm.

The V method with QR factorization (VQ): gprSRPP4.m - Carries out
approximate Gaussian process regression prediction using the subset of regres-
sors (SR) or projected process approximation (PP) with the active set selected
by a partial Cholesky decomposition with pivoting. This version uses a QR
factorization (and partial Cholesky with pivoting) to increase the numerical
stability of the algorithm.

Partial Cholesky: chol part.m –This function does a partial Cholesky de-
composition, with pivoting or optionally without pivoting, of the kernel matrix
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K defined by a covariance function that follows Rasmussen and Williams style
for covariance functions.

Quadratic Covariance function: covQUADiso.m – Quadratic covariance
function with isotropic distance measure. Written in the style of Rasmussen and
Williams covariance functions.

Quadratic Covariance function for Automatic Relevance Deter-
mination: covQUADard.m – Quadratic covariance function with Automatic
Relevance Determination (ARD) distance measure. Written in the style of Ras-
mussen and Williams covariance functions.

Cubic Covariance function: covCUBICiso.m – Cubic covariance function
with isotropic distance measure. Written in the style of Rasmussen and Williams
covariance functions.

Cubic Covariance function for Automatic Relevance Determina-
tion: covCUBICard.m – Cubic covariance function with Automatic Relevance
Determination (ARD) distance measure. Written in the style of Rasmussen and
Williams covariance functions.

Polynomial Covariance function: covPOLYiso.m – Polynomial covari-
ance function with isotropic distance measure. Default degree is 4. Written in
the style of Rasmussen and Williams covariance functions.

Polynomial Covariance function for Automatic Relevance Deter-
mination: covPOLYard.m – Polynomial covariance function with Automatic
Relevance Determination (ARD) distance measure. Default degree is 4. Written
in the style of Rasmussen and Williams covariance functions.

Some utilities:

sq dist.m - a function to compute a matrix of all pairwise squared distances
between two sets of vectors, stored in the columns of the two matrices, a (of size
D by n) and b (of size D by m). If only a single argument is given or the second
matrix is empty, the missing matrix is taken to be identical to the first. NOTE:
This version of sq dist calls a FORTRAN mex file and will be more efficient
than the sq dist.m file supplied with Rasmussen and Williams code.

sq distf.dll - a dynamic link library file created by Matlab’s mex utility. It is
called by sq dist.m. This utility works for Matlab 7.0, 7.1 and 7.2 but has not
been successfully tested for Matlab 7.4.
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